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Abstract

Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and
clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast
cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have
already been applied into clinical trials and practice. In this study, we summarized several representative
gene-expression-based signatures with significant prognostic value and separately assessed their ability of prognosis
prediction in their originally targeted populations of breast cancer. Notably, many of the collected signatures were originally
designed to predict the outcomes of estrogen receptor positive (ER+) patients or the whole breast cancer cohort; there are no
typical signatures used for the prognostic prediction in a specific population of patients with the intrinsic subtype. We thus
attempted to identify subtype-specific prognostic signatures via a computational framework for analyzing multi-omics
profiles and patient survival. For both the discovery and an independent data set, we confirmed that subtype-specific
signature is a strong and significant independent prognostic factor in the corresponding cohort. These results indicate that
the subtype-specific prognostic signature has a much higher resolution in the risk stratification, which may lead to
improved therapies and precision medicine for patients with breast cancer.
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Introduction
Breast cancer is one of the most frequently diagnosed cancers in
women worldwide [1]. The average 5-year survival rate among
people with breast cancer is 90% [2]. The significant survival
improvement achieved in the past decades greatly benefits from
the advances in early diagnosis and appropriate therapy [3].
Although clinicopathological factors, such as tumor size, axillary
lymph-node status and histological grade, have been used most
frequently and are still important for diagnosis and prognosis
evaluation of breast cancer patients, their use alone was insuf-
ficient for clinical guidance in the choice of therapeutic strategy
[4]. A major step has been made toward the development and
testing of relevant molecular prognostic and/or predictive signa-
tures, which could be used to complement clinicopathological
factors. In particular, gene-expression-profiling studies of pri-
mary breast tumors produce numerous distinct prognostic gene
sets [5, 6]. These multigene prognostic signatures usually dis-
criminate patients with good and poor prognosis, which allows
more effective decision-making in clinical trials and treatments.

Given that the current expression-based prognosis studies
differ considerably with respect to their methodology and
analytical and clinical validations, we thus attempt to sum-
marize a number of highly reliable signatures. We selected 24
highly reliable prognostic signatures using a set of rigorous
screen filters (Tables 1 and 2 and Supplementary Table S1,
see Materials and Methods). Overall, we found that 14 of 24
signatures were subtype-specific signatures, which include
Mammaprint (ER+, LN-), Oncotype DX (ER+, LN-), Endopredict
(ER+, HER2-), GGI-97 (ER+), Rotterdam signatures (LN-), MS-14
(ER+, LN-), Mammostrat (ER+), 14-gene Yau (ER-), TNBC-related
metagenes (ER-, PR-, HER2-), 5-gene Yau (ER-), 95-GC (ER+, LN-),
EMT-related gene signature (LN-), RR-related signature (ER+)
and 95-gene Naoi (ER+, LN-). Most of these subtype-specific
signatures aimed at ER+ breast cancer patients.

1st- and 2nd-generation prognostic signatures

We collected six classic prognostic gene-expression-based
signatures from the so-called 1st- and 2nd-generation signa-
tures [7]. All of them were marketed, and two of those were
approved by US Food and Drug Administration (FDA). Despite
differences in the genes that compose each of the signatures,
1st-generation prognostic signatures are usually more accurate
to predict recurrence risk within the 1st 5 years and associated
with proliferation-related genes. For comparison, the 2nd-
generation signatures focus more on the late recurrences, while
some of them were also associated with benefit from adjuvant
chemotherapy. We highlighted three most widely adopted

platforms (MammaPrint [8], Oncotype DX [9] and Endopredict
[10]). For more detailed information, please refer to references
[11, 12].

MammaPrint (70-gene assay) is the 1st successful prognostic
signature that was marketed by Agendia (the Netherlands). The
signature was developed from microarray analysis of 78 young
(<55 years) ER+ and LN- breast cancer patients. This microar-
ray test outperformed than the traditional clinicopathological
factors in an independent cohort of 295 invasive breast cancers
and then received approval as a diagnostic assay by the FDA in
February 2007 [8, 13].

Oncotype DX is a 21-gene prognostic predictor developed
by using quantitative real-time polymerase chain reaction
(qRT-PCR)-based expression profles. Recurrence score was
calculated based on this signature’s prognosis for the risk of
distant relapse at 10 years for patients with ER+ and LN−. A
number of retrospective clinical studies have also demonstrated
the predictive value of this signature for distant recurrence risk,
overall survival (OS) and response to adjuvant chemotherapy in
early breast cancer [9, 14, 15].

Endopredict (11-gene assay) is another marketed prognostic
test, which predicts risk of distant recurrence in patients with
ER+ and HER2-. Many subsequent studies showed that this sig-
nature could add prognostic value to classic clinicopathological
variables and associated with benefit from adjuvant chemother-
apy [16, 17].

Biological pathway-based prognostic signatures

We also assigned the other collected prognostic signatures to
several relevant biological pathways. These pathways include
estrogen receptor, proliferation and metastasis, immune func-
tion, cell cycle and metabolism process. The according studies
all shown good performance in classifying breast cancer and
estimating clinical outcomes. Detailed descriptions can be seen
in Table 2 and Supplementary Table S1.

Breast cancer shows a high inter-individual heterogeneity
at clinical and molecular levels. This heterogeneity poses an
acute challenge for not only the accurate diagnosis and suit-
able treatment of patients but also in-depth understanding of
the underlying tumor biology. Stratification of breast tumors
into distinct subtypes has been shown an effective strategy to
overcome the heterogeneity within these populations [18]. The
currently subtyping of breast cancer is mainly based on the
molecular, histopathological and clinical levels with different
therapeutic implications. Clinicopathological criteria are a tradi-
tional strategy for breast cancer classification and assessment.
Progressively, new classifications such as PAM50 method [19]

Table 1. An overview of the 1st- and 2nd-generation prognostic signatures

Signature Year Genes Approval PMID HR P

1st generation
Mammaprint 2002 70 CE, FDA 2007 11823860 4.6 <.001
Oncotype DX 2004 21 CE 15591335 3.21 <.001
Rotterdam signatures 2005 76 CE 15721472 5.67 <.0001
GGI-97 2006 97 CE 16478745 3.61 <.001
2nd generation
PAM50 2009 50 CE, FDA 2013 19204204 NA <.001
Endopredict 2011 11 CE 21807638 1.28 <.001

Abbreviations: FDA, US Food and Drug Administration; CE, European community marking; HR, hazard ratio from original literature; P, P-value of Cox analysis from
original literature; NA, not available, PMID, Pubmed ID.
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Table 2. An overview of biological pathway-based prognostic signatures

Signature Year Genes Pathway PMID HR P

IGS 2007 186 PM 17229949 1.4 <.001
MS-14 2008 14 ER 19025599 4.02 <.05
3D-signature 2008 22 ER 18714348 5.5 <.0001
14-gene Yau. 2010 14 IF 20946665 3.93 <.00001
Mammostrat 2010 5 IF 20615243 1.62 <.00001
TNBC-related metagenes 2011 16 MP 22220191 4.03 <.001
95-gene Naoi. 2011 95 PM 20803240 NA <.001
5-gene Ascierto ML. 2012 5 IF 21479927 NA <.001
5-gene Yau. 2013 5 PM 24172169 1.5 <.05
95-GC 2014 72 ER 24461457 1.95 <.001
EMT-related gene signature 2014 51 PM 25060555 2.61 <.0001
CTC 2015 6 PM 25529931 NA <.001
RR-related signature 2015 18 ER 26527319 3.99 <.001
M-Sig 2015 146 PM 25974184 >2 <.001
IgSF genes 2017 10 IF 27911271 2.78 <.001
GC-18 2017 18 PM 28886126 5.1 <.001
12-gene signature 2017 12 CC 28122328 3.95 <.0001
23-gene Li. 2017 23 PM 28529601 2.1 <.01

Abbreviations: FDA, US Food and Drug Administration; CE, European community marking; HR, hazard ratio; P, P-value from Cox analysis; NA, not available; ER, estrogen
receptor; PM, proliferation and metastasis; IF, immune function; CC, cell cycle; MP, metabolism process, PMID, Pubmed ID.

have emerged to define intrinsic breast cancer subtypes, which
is informative for prognosis and responsiveness to various ther-
apies. The intrinsic molecular subtypes are gradually becoming
part of the lexicon of breast cancer researchers, oncologists
and pathologists [20–22]. Identification of molecular subtypes of
breast cancer opened new perspectives for personalized diagno-
sis and therapy. Yet, a number of studies have pointed that even
in the patient group with particular subtype, clinic features and
patient’s outcome could be inherently different [23–25].

A substantial proportion of breast cancer patients received
under- or over-treatment because of insufficiently accurate prog-
nosis predictions [26, 27]. Although the current prognosis sig-
natures are usually well tested in the respective studies, their
original designs were for the complete population of breast
cancer or only a specific patient cohort, such as ER+ patients.
Given the complex and heterogeneity within breast cancer, it
is not clear how the potential applicability of these representa-
tive signatures in the well-classified individual subgroups, e.g.
tumor samples stratified based on molecular profiling. Using
gene expression profiles of breast cancer patients from The
Cancer Genome Atlas (TCGA) [4], we evaluated prognostic ability
of six expression-based signatures on individual intrinsic sub-
groups and the whole cohort. We noted that most of selected
prognostic signatures were generally not suitable to evaluate
the prognosis of intrinsic subgroups despite that they generally
shown significant prognostic power within their originally tar-
get patient population. To create an effective predictive model
aiming at a particular group with distinct and intrinsic tumor
characteristics, we integrated gene expression with DNAmethy-
lation, somatic copy number variation and mutation data to
develop a computational pipeline for group-specific prognostic
signatures discovery.

Materials and Methods
Prognosis signatures collection

A total of 24 highly reliable breast cancer prognostic signatures
were obtained. We first performed a systematic review of the

literature between 2007 and 2017 by searching for the keywords
‘breast cancer’, ‘gene expression’, ‘diagnosis’, ‘signature’ and
‘prognosis’ to clarify the present state of knowledge regarding
gene-expression-based prognostic signatures. The choice of the
signatures used in this study was based on several criteria. (i)
Only gene-expression-based signature associated with patients’
outcome were included. (ii) We tried to select signatures with
high known prognostic value in terms of OS, disease-free sur-
vival, distant metastasis-free survival and disease relapse-free
survival. (iii) We tried to select signatures derived from the study
of a large sample group (e.g. sample size,>500) with a long-term
follow-up time (e.g. median follow-up time is 5 years) ensuring
the adequate statistical power. (iv) Signatures with insufficient
descriptions of diagnostic and prognostic performance were
excluded. In addition, we also collected several signatures that
did not satisfy the filtering criteria but have been validated by
clinical trials.

A total of 24 signatures passed our criteria. Because
of inadequate information, eight representative signatures
were selected, including five subtype-specific signatures
and three non-subtype-specific signatures (Supplementary
Table S2). These five subtype-specific signatures contain the 1st-
(Rotterdam signatures, Oncotype DX) and 2nd- (Endopredict)
generation prognostic signatures, as well as pathway-based
signature (MS-14, Mammostrat). The three non-subtype-specific
signatures contain IgSF genes, 12-gene signature and 18-GC.
Among these eight signatures, ‘Oncotype DX’ signature was
generated from a 250-candidate genes panel through computing
integrative risk scores of patients (e.g. ER group score and
proliferation group score) and the 18-GC signature that was
developed by generating classification trees and optimized by
using Bayesian statistical method. The remaining six signatures
(including Endopredict, Rotterdam signatures, Mammostrat,
12-gene signature, MS-14 and IgSF signature) were developed
generally through building a Cox proportional hazard regression
model with slight differences during the gene selection process.
‘Endopredict’ selected genes by the rank order of Cox P-values.
‘Rotterdam signatures’ kept the robustness of gene selection by
a bootstrapping of patients in the training set. ‘Mammostrat’

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/6/2130/5090083 by guest on 06 Septem

ber 2022

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby073/-/DC1


Breast cancer prognosis signature 2133

iteratively pruned candidate genes obtained from a univariate
Cox model, until the removal caused a significant reduction
in the fit of the model. Following a meta-analysis and genes
filtration, ‘12-gene signature’ was developed by Cox regression
analysis. ‘MS-14’ employed a semi-supervised principal com-
ponent method to optimize the Cox scores and Least Absolute
Shrinkage and Selection Operator (LASSO) regression to select
14 genes. After the Cox regression analysis, prognostic genes
of IgSF signature were identified by integrating protein–protein
interaction network and immunoglobulin superfamily genes.

Data sets

The mRNA gene expression, DNA methylation, segmented copy
number profiles and clinical data of primary breast cancer
patients were downloaded from the TCGA data portal. The TCGA
gene expression profiles were treated as the discovery data set
including 813 tumors, which was composed of 136 (16.7%) basal-
like, 90 (11.1%) HER2-enriched, 411 (50.6%) Luminal A and 176
(21.6%) Luminal B samples. In order to ensure no systematic
biases in the multi-omics analysis, the DNA methylation and
copy number profiles with matched gene expression profiles
were retained.

Gene expression data generated with Affymetrix U133A
arrays for 454 breast cancer patients (GSE25066)was downloaded
from GEO database as the independent validation data set.
This data set includes 163 (35.9%) basal-like, 76 (16.7%) HER2-
enriched, 149 (32.8%) Luminal A and 66 (14.6%) Luminal B
samples. As previously described [28], gene expressions were
called from the raw Affymetrix.cel files with RMA and ComBat
normlization methods [29].

All the intrinsic subtype classifiers of patients were based
on PAM50 annotation. We focused on four major breast can-
cer subtypes, namely, basal-like, HER2-enriched, Luminal A and
Luminal B, where the Normal-like samples were assigned into
HER2-enriched group.

Identification of group-specific prognostic signatures

Candidate prognostic genes

The normalized Reads Per Kilobase of transcript, per Million
mapped reads (RPKM) values of TCGA profiles were used as
gene expression levels. For patients from the whole cohort or a
particular subtype, gene expression levelsmore than 1 in at least
50% samples were kept for further analysis. A candidate prog-
nostic genewas determined if its expressionwas associatedwith
OS. The candidate prognostic genes should satisfy the following
two criteria. First, the gene significantly affected survival in the
univariate analysis of Cox proportional hazard model (P < .05).
Second, there was a significant difference between the survival
times of two groups divided according to themedian of this gene
expression (P < .05).

Filtering for the multi-omics data analysis

Aberrant methylation of gene promoter is an alternative way
to inactivate tumor oncogenes or suppressor genes in cancer
[30]. DNA methylation level of gene promoter may be a good
indication for understandingmolecularmechanismof prognosis
gene. CpG methylation was measured by the Illumina Infinium
450K platform. For simplicity, the CpG sites occurred in the
promoter region of candidate prognosis gene were retained. In
order to search for gene mostly influenced by DNA methylation,
Pearson correlation coefficients (PCC) betweenmRNAexpression

of candidate prognostic gene and methylation levels of its pro-
moter CpG sites were calculated. We defined ‘Epigenetic regula-
tion’ gene whose expression was significantly associated with at
least one CpG methylation level (PCC < 0, P < .05).

Somatic copy number alterations (SCNAs) commonly
occurred in breast cancer. Subtype-specific frequent alteration
region may represent specific driver event explaining the
intrinsic fundamental pathological mechanisms. We performed
group-specific ‘driver’ events discovery using Genomic Identifi-
cation of Significant Targets in Cancer 2.0 [31] for the segmented
copy number data of the particular cohort. The significantly
altered regions were identified at q value < 0.25. The ‘SCNA’
gene set was defined as the candidate prognosis genes falling
within the group-specific significantly altered regions.

Somaticmutation files were downloaded fromThe Catalogue
Of Somatic Mutations In Cancer database [32]. ‘Point mutation’
gene setwas defined as candidate prognosis geneswhose coding
sequence contain any validated somatic mutation.

The risk gene set was identified by the candidate prognostic
genes satisfied any filtering of the omics data analysis, that is, a
union gene set composed of ‘Epigenetic regulation’, ‘SCNA’ and
‘Point mutation’ gene sets.

Variable selection based on random survival forest

Random survival forest is an important extension of random
forests and a commonly used method for variables selection
in high-dimensional survival settings [33]. For each subtype,
we obtained a risk gene set and then the corresponding gene
expression profiles and clinical data (including survival time
and events) were used for training the random survival forest
model. The response variables are mainly based on the survival
time and event (alive or death) of patients and the predictor
variables are these expression levels of the risk genes. During
the construction of random survival forest model, tree node
splits according to maximizing survival differences between
child nodes. In each tree, survival time and status of the patients
were considered as response variables. The random survival
forest analyses provide measures including variable importance
and minimal depth for each variable. A larger variable impor-
tance and a smaller minimal depth mean that the variable is
more predictive in the survival model. To refine the risk gene
set, we fit a random survival forest model using 1000 trees for
the according sample group. Random survival forest analyses
were carried out using R package ‘randomForestSRC’. We built
the model using the function rfsrc() and selected genes using
function var.select() with the most conservative threshold.

The group-specific risk score was calculated for each
patient as a linear combination of the according signature
genes weighted by the Cox regression coefficients, which were
obtained fromunivariate analysis of candidate prognostic genes.
We used the median of the risk scores as the threshold to
discretize scores into high- and low-risk groups, as above- and
below-median scores in the cohort were associated with poor
and favorable survival.

Statistical analysis
All statistical analysis were carried out using R 3.3.1 with the
package ‘survival’ [34] and package ‘randomForestSRC’ [33]. Uni-
variate Cox proportional hazard models were fit to identify fac-
tors significantly related to OS. Survival curves were constructed
using the Kaplan–Meier method [35] and the log-rank test
[36] was used for comparison between groups. In multivariate
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Table 3. Evaluation of non-subtype-specific signatures within the whole cohort

Signature Low-/high-risk group (n) HR (95% CI) Significance in the corresponding cohort

IgSF genes 407/406 1.81 (1.16, 2.81) 0.0079
18-GC 407/406 1.29 (0.84, 1.99) 0.23
12-gene 407/406 1.53 (0.99, 2.36) 0.049

Figure 1. Work chart of identification of subtype-specific prognostic signature.

Figure 2. KM plots for subtype-specific signatures in the according subgroup from the training set.

models, we estimated the adjusted hazard ratios (HRs) of breast
cancer subgroups with standard clinicopathologic variables: age
at diagnosis, histologic grade, menopausal status at diagnosis,
tumor size (T stage), lymph node invasion (N stage) and
metastatic spread (M stage). Samples with missing values were
excluded from the analysis. In order to assess the prediction
error rate, we calculated C-index, a commonly used measure
to quantify the discriminatory power of a predictive model, for
prognosis models using the R package ‘survcomp’ [37]. Wald’s
test was used to evaluate the significance of HRs. All tests were
two-sided and P < .05 was considered statistically significant.

Results
Assessment of the prognostic power of expression-
based signatures in breast cancer subtypes

The tests for signature development are generally different in
the patient cohorts and experimental and computational meth-

ods of analysis. A previous study has pointed that the signifi-
cant agreement shown the outcome predictions using the cur-
rent gene-expression-based prognostic signature for individual
patients [38]. Given that the significant complexity and hetero-
geneity within the tumor, however, an important and unan-
swered question is what is the performance of these predictors
across distinct subtypes of breast tumors. We thus attempted
to evaluate the prognostic value for the selected, highly reliable
signatures within individual breast cancer subtypes.

We first selected three representative non-subtype-specific
signatures, which were designed for the whole breast cancer
cohort, to access their prognostic value within individual breast
cancer intrinsic subtypes (see materials and methods). The
TCGA breast cancer patients were used as the evaluation cohort
and the according risk scores were calculated (Supplementary
Table S2). In concordance with the previous studies, we found
that these signatures generally remained to be good predictors
of risk stratification in the whole breast cancer patient cohort
(Table 3).
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Table 4. Univariable and multivariable Cox regression analysis of the subtype-specific prognosis signatures in the training set

Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Basal-like (n = 136)
Age <=50/>50 1.46 (0.53, 4.04) .4705
Disease stage <=II/>II 3.96 (1.46, 10.8) .007
Premenopausal Yes/no 0.96 (0.25, 3.61) .94
T stage <=T2/>T2 1.30 (0.40, 4.26) .66
Lymph node involvement <=N1/>N1 8.43 (3.00,23.6) <.001 26.0 (3.27,206) .0021
M stage M0/M1 1.74 (0.39, 7.79) .47
Signature Low risk/high risk 8.28 (1.87,36.6) .0053 17.5 (2.19,139) .0070
HER2 enriched (n = 90)
Age <=50/>50 2.06 (0.64, 6.66) .23
Disease stage <=II/>II 7.45 (2.19, 25.4) .0013 35.3 (3.58, 348) .0022
Premenopausal Yes/no NA NA
T stage <=T2/>T2 3.74 (1.31, 10.6) .013
Lymph node involvement <=N1/>N1 3.76 (1.25, 11.3) .018
M stage M0/M1 1.33 (0.29, 6.00) .71
Signature Low risk/high risk 3.45 (1.08, 11.0) .036 6.29 (1.48, 26.7) .012
Luminal A (n = 411)
Age <=50/>50 1.32 (0.61, 2.83) .48
Disease stage <=II/>II 1.40 (0.69, 2.83) .35
Premenopausal Yes/no 0.97 (0.35, 2.68) .96
T stage <=T2/>T2 0.60 (0.25, 1.45) .25 0.18 (0.04, 0.78) .022
Lymph node involvement <=N1/>N1 1.35 (0.56, 3.28) .50
M stage M0/M1 2.70 (1.08, 6.74) .033
Signature Low risk/high risk 3.13 (1.48, 6.60) .0028 4.13 (1.50, 11.4) .0061
Luminal B (n = 176)
Age <=50/>50 1.06 (0.37, 3.03) .91
Disease stage <=II/>II 3.80 (1.34,10.8) .012 11.5 (1.28, 103) .029
Premenopausal Yes/no 3.13 (0.39, 24.8) .28
T stage <=T2/>T2 1.87 (0.68, 5.14) .22
Lymph node involvement <=N1/>N1 2.32 (0.90,5.97) .080
M stage M0/M1 1.76 (0.60,5.22) .31
Signature Low risk/high risk 5.04 (1.55, 16.4) .0073 8.25 (1.97, 34.4) .0038

Abbreviations: HR, hazard ratio; CI, confidence interval; significant P values (<0.05) are shown in bold.

In addition to non-subtype-specific signatures, 14 of our col-
lected signatures were subtype-specific. Notably, we found that
the subtype-specific signatures were almost all developed using
technologies such as RT-PCR and/or microarray (Supplementary
Table S1) and most of the subtype-specific signatures using a
fixed cut-off rather than the median of risk scores to define
risk groups. Thus, it is very difficult to apply these subtype-
specific signatures to the data from RNA-seq that is a widely
used technology, because the original thresholds of signatures
could not be directly used for the risk stratification of patients
detected by different technologies. A comprehensive method
correcting the difference between RT-PCR, microarray and RNA-
seq is needed for effective evaluation of subtype-specific signa-
tures and application to sequencing-based transcriptome data.

Identification of subtype-specific prognostic signatures
using diverse molecular data

To investigate molecular prognostic signature within individual
intrinsic subgroups, we developed an approach that integrated
clinical and multiple-omics data (including transcriptome,
epigenome and genome data) of TCGA breast cancer tumors to
identify group-specific expression-based signatures correlated
with survival of patient belonging to individual intrinsic subtype.
Taking the basal-like subtype as an example (Figure 1), we
selected the group-specific signature containing genes that not

only were significantly associated with patients’ survival but
also could lead us to better understand the complex biology
of breast cancer. A detailed description of our computational
workflow can be seen in materials and methods.

For each intrinsic subgroup, we used the according subtype-
specific signature to divide patients of the training set into a
high-risk group or a low-risk group (see materials and methods,
Supplementary Table S3–S8). Overall, the patients within the
low-risk group showed significantly longer OS than those within
the high-risk group in all of the four subtypes (Figure 2): basal-
like group (median survival not reached versus 116 months;
P = .0016), HER2-enriched group (median survival, 142.4 months
versus 68.4 months; P = .027), Luminal A group (median survival,
147 months versus 115 months; P = .0017) and Luminal B group
(median survival, 85.8 months versus 69.9 months, P = .0035).
We found the HRs for the four subgroups were all greater than 3,
with the range from 3.13 to 8.28 (Table 4).

To determine whether the survival prediction performance
of the subtype-specific signatures is independent of clinical
and pathological factors of patients within each individual
subgroup, we performed multivariable Cox regression analysis.
We observed that all of the signatures retained strong and
significant independent prognostic factors in the four cohorts
(Table 4). We observed that the subtype-specific signature was
the only significant risk factor in the multivariate Cox model
of the Basal-like cohort. For the other three cohorts, except
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Figure 3. KM plots for subtype-specific signatures in the according subgroup from the validation set.

Table 5. Univariable and multivariable Cox regression analysis of the subtype-specific prognosis signatures in the validation set

Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Basal-like (n = 163)
Age <=50/>50 1.54 (0.91, 2.60) .11
Grade 1/>1 NA NA
T stage <=T2/>T2 2.32 (1.35,3.97) .0022
Lymph nodal status <=N1/>N1 1.70 (0.97,2.97) .062
Signature Low risk/high risk 2.07 (1.20,3.57) .0093 2.24 (1.24,4.05) .0076
HER2 enriched (n = 76)
Age <=50/>50 2.79 (0.97, 8.05) .058 4.31 (1.14, 16.3) .031
Grade 1/>1 2.08 (0.27, 15.9) .48
T stage <=T2/>T2 1.02 (0.38, 2.75) .97
Lymph nodal status <=N1/>N1 4.23 (1.57, 11.4) .0044 5.58 (1.72, 18.0) .0041
Signature Low risk/high risk 3.36 (1.08, 10.4) .036 4.81 (1.27, 18.2) .021
Luminal A (n = 149)
Age <=50/>50 0.36 (0.11, 1.13) .079
Grade 1/>1 NA NA
T stage <=T2/>T2 2.78 (1.03, 7.47) .043 2.82 (1.01, 7.85) .047
Lymph nodal status <=N1/>N1 3.61 (1.31, 9.97) .013 4.79 (1.62, 14.1) .0046
Signature Low risk/high risk 2.77 (0.96, 7.99) .060 3.47 (1.15, 10.5) .027
Luminal B (n = 66)
Age <=50/>50 0.58 (0.16, 2.04) .39
Grade 1/>1 NA NA
T stage <=T2/>T2 0.97 (0.27, 3.44) .96
Lymph nodal status <=N1/>N1 0.60 (0.08, 4.78) .63
Signature Low risk/high risk 5.29 (1.12, 25.0) .036 5.89 (1.19, 29.1) .029

Abbreviations: HR, hazard ratio; CI, confidence interval; significant P values (<0.05) are shown in bold; NA, not available because of too much missing data.

for subtype-specific signatures, only one clinical variable was
the significant risk factor in the multivariate Cox models,
respectively. In addition, we found that our predictive models
showed substantial predictive power, with C-indexes ranged
from 0.76 to 0.88 (Supplementary Table S9).

Subtype-specific prognostic signature presents
prognosis power within an independent breast cancer
cohort

Todeterminewhether our subtype-specificmolecular signatures
derived from the TCGA data are applicable to a completely
independent set of samples, the expression profiles of a cohort
of 454 patients were collected. For each subtype, the patients of
the independent cohort were classified as high-risk or low-risk
groups according to the risk scores calculated using subtype-
specific prognostic signatures.Notably,we found each of the four
group-specific signature shows a good prognosis power (Figure 3,
Table 5). The medians of HR for the four subgroups were all
greater than 2, with the range from 2.07 to 5.29. Moreover,
we found these models shown good prediction accuracy with

C-indexes ranged from 0.66 to 0.79 (Supplementary Table S3).
These data demonstrated that each of the prognostic signatures
was significantly predictive for outcome in the corresponding
breast cancer subtype.

The prognostic power of the ‘whole cohort signature’ is
limited within subgroup

We also identified the ‘whole cohort signature’ employing our
group-specific prognostic approach on the entire training data
sets (Supplementary Table S7). Noticeably, the ‘whole cohort sig-
nature’ also shown a good risk stratification in both the training
and validation data (Figure 4, Table 6). The association of the
‘whole cohort signature’ with survival was further investigated
in a multivariable Cox analysis including the same covariates
considered before. The ‘whole cohort signature’ retained its sig-
nificant and favorable prognostic role on the patients’ survival.
Interestingly, although the ‘whole cohort signature’ could be a
strong and independent risk factor for the data set which is not
a distinguished subtype, we found its classification efficiency
was substantially decreased when it is applied on the individual
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Figure 4. Evaluation of the whole cohort signature.

Table 6. Univariable and multivariable Cox regression analysis of the ’whole cohort signature’ in the training and validation set

Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Training set (n = 813)
Age <=50/>50 1.31 (0.81, 2.10) .27
Disease stage <=II/>II 2.56 (1.67,3.93) <.001 2.69 (1.32, 5.48) .0061
Premenopausal Yes/No 1.52 (0.74, 3.15) .26
T stage <=T2/>T2 1.17 (0.72, 1.90) .54
Lymph node involvement <=N1/>N1 3.06 (1.95,4.82) <.001
M stage M0/M1 2.15 (1.22,3.79) .0079
Signature Low risk/high risk 2.04 (1.31, 3.17) .0015 2.30 (1.46, 3.63) <.001
Validation set (n = 454)
Age <=50/>50 1.14 (0.77, 1.70) .50
Grade 1/>1 8.26 (1.15, 59.3) .036
T stage <=T2/>T2 2.02 (1.36, 3.01) <.001 1.81 (1.21, 2.71) .0041
Lymph nodal status <=N1/>N1 2.42 (1.60, 3.67) <.001 2.12 (1.39, 3.23) <.001
Signature Low risk/high risk 1.87 (1.24, 2.81) .0028 1.74 (1.15, 2.63) .0087

Abbreviations: HR, hazard ratio; CI, confidence interval; significant P values (<0.05) are shown in bold.

intrinsic subgroups of either the training or validation data.
Specifically, the ‘whole cohort signature’ is significant only in
the basal-like cohort from the training set and did not reach
the significant threshold in all the four subgroups from the
validation set. These results further demonstrated the validity
of our signature discovery method.

In addition, we also performed patient survival prediction
using cross-validated models, e.g. assessing Basal-like-specific
signature separately in the other three individual intrinsic
subgroups. We repeated the evaluation separately for the
four subtype-dependent signatures. Unfortunately, all of the
signatures showed little predictive power across the inter-
subtype groups in the both data sets (Supplementary Table S10).
Combined with the previous results for evaluation of subtype-
specific signatures, we should not only consider the underlying
biological variability between subclasses of breast cancer but
also better understand and predict the prognosis within the
subtype-specific context.

Discussion
One of the most attractive features of molecular biomarker for
clinical applications is accurate prognosis for patients with ma-

lignant disease, which helps stratify patients into different risk
groups and choose the most effective treatment. In this study,
we present a brief overview of representative, gene-expression-
based prognostic signatures of breast cancer according to vari-
ous rigorous filtering criteria. We found several well-established
prognostic signatures, carrying similar information of prognosti-
cation, could barely predict the survival in the intrinsic subgroup
of patients with breast cancer. Although several recent studies
highlighted the potential limitations of prognostic prediction
using whole patient data sets without considering the effect
of tumor heterogeneity, the development of subtype-specific
prognostic signature need to be paidmore attention [39–41]. This
study introduces a method of prognostic biomarker discovery
with a subtype-specific manner, which simultaneously identi-
fied prognostic signatures for each of the four intrinsic subtypes
in the TCGA data set. Through the Cox proportional hazards
analyses, each of the signatureswas confirmed the validity in the
corresponding subgroups from a single independent data set.

A large number of prognostic and predictive signatures have
been proposed for breast cancer. Among them, the 1st- and 2nd-
generation prognostic signatures have been marketed, which
were generally developed by evaluating the difference in disease
recurrence for ER+ patients. Notably, some signatures were even
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trained and tested using the complete cohort without consid-
ering the internal heterogeneity of breast cancers. These signa-
tures inevitably classify the high grade and ER-negative patients
to the high-risk group, regardless of a large majority of these
patients have good prognosis [42, 43]. Therefore, it is not a
surprise that the limited ability of prognosis prediction on all
of each subgroup was observed. Despite there are no clinically
useful prognostic signatures for ER-negative cancers, the basal-
like-specific signaturesmay provide a potential solution because
of nearly 70% of the basal-like subtype were ER-negative. To the
best of our knowledge, our study is a 1st attempt to investigate
subtype-specific signatures simultaneously in four major sub-
groups determined by the PAM50 subtyping. It may be useful
for the prognostic study in the future to recognize significant
prognostic biomarkers though analyzing the individual breast
cancer subgroups defined by other relevant strategies. In addi-
tion,we also found the subtypes defined by the union of subtype-
specific signature genes associated with the intrinsic subtypes
(Supplementary material).

With the advantage of multidimensional genomic studies,
we could know the genomic and epigenetic abnormalities that
occurred in cancer cells and their downstream effects on gene
expression. Nowadays, it’s not uncommon to identify prognosis
risk factors via an integrated genomic approach. For example,
Auwera et al. [44] present an integrated transcriptome analysis
of breast cancer to identify a prognostic signature composed of
severalmRNAs andmicroRNAs. By integratingmRNA,microRNA
and DNA methylation next-generation sequencing data, Volinia
and his colleagues [45] performed survival analysis on patients
with breast cancer to identify an integrated prognostic signa-
ture. In this study, we also proposed an integrating multi-omics
method to investigate subtype-specific signatures. In compari-
son, our prognostic signatures used only mRNA gene expression
information for prognosis evaluation, which could be applied
more broadly because of the plethora of transcriptome profiling
of cancer patients. Furthermore, the signatures identified using
this approach on the patients from the subgroup or the entire
cohort both have significant prognostic value in the correspond-
ing data sets.We anticipate our computational frameworkwould
have more widespread application value in the other cancer
prognosis studies.

Using subtype-specific signatures, we observed a difference
in prognosis for each of four intrinsic subtypes on both the TCGA
and independent validation data sets. Each of the signatures
encompasses known cancer genes. Interestingly, we found there
were no overlap genes between these signatures, suggesting that
the underlyingmechanisms related to patients’ outcome are not
common for the different breast cancer subclasses. Specifically,
the basal-like-specific prognostic signature contains six genes.
Among them, LMO2 (a gene encodes a cysteine-rich, two LIM-
domain protein) has a most risk weight for basal-like patient
prognostic evaluation, which has been reported to be an impor-
tant transcription factor to promote tumor cell invasion and
metastasis in basal-type breast cancer [46]. There are only a
few targeted-treatment options for basal-like breast cancers,
LMO2 plays vital roles in breast cancer development, and its
inhibitors may be useful targets for the therapy with basal-
like patients with a poorer outcome [47]. The HER2-enriched-
specific signature is composed of five genes. The gene ABCC5
could promote breast cancer metastasis to bone [48] and induce
chemoresistance in breast tumor initiating cells [49], which may
have implications for the better treatment of the HER2-enriched
populations with poor prognosis. The Luminal A-specific prog-
nostic signature contains eight genes. We found three genes

(PTGIS, ST3GAL1 and PGAP1) were involved inmetabolic pathway
and two genes (IL1R1 and LONRF1) were part of cytokine signaling
in immune system pathway. The Luminal B-specific prognostic
signature contains 10 genes,which is the largest gene set among
the four signatures. A gene named FBXO4 whose transcriptional
level was significantly higher in the luminal-subtype breast can-
cer cell than in the basal subtype [50]. A recent study also point
out that FBXO4 has the prognostic power in the luminal subtype
breast cancer [51].

Rather than adopting the ‘one size fits all’ approach, we
anticipated that the development of subtype-specific prognostic
signatures will enable a more effective prediction of patients’
survival and may serve as a good starting point for personalized
decision-making.

Key points
• Breast cancers are not a single disease but a hetero-
geneous entity having distinct subtypes with diverse
disease biology, clinical behavior and therapy sensi-
tivity. The identification of subtype-specific prognostic
biomarkers is important for breast cancer translational
research.

• The representative gene-expression-based signatures
with significant prognostic value were generally not
suitable to evaluate the prognosis of the intrinsic breast
cancer subtype; there is a great need for a more subtle
risk hierarchy with the outcome of breast cancer.

• We describe a subtype-specific prognostic signature
discovery approach and the resulting signature is con-
firmed as a promising and potential independent prog-
nostic indicator for the corresponding cohort.

• Our study demonstrated that ’one-size-fits-all’ solution
may not be appropriate for the prognostic prediction of
breast cancer individuals belonging to different biolog-
ical subgroups; it is a necessary step to make a higher
resolution for the identification of prognostic signatures
in the future.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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